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Arrested states formed on quenching spin chains with competing interactions
and conserved dynamics

Dibyendu Das and Mustansir Barma
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

~Received 30 November 1998!

We study the effects of rapidly cooling toT50 a spin chain with conserved dynamics and competing
interactions. Depending on the degree of competition, the system is found to get arrested in different kinds of
metastable states. The most interesting of these has an inhomogeneous mixture of interspersed active and
quiescent regions. In this state, the steady-state autocorrelation function decays as a stretched exponential
;exp@2(t/t0)

1/3#, and there is a two-step relaxation to equilibrium when the temperature is raised slightly.
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PACS number~s!: 05.70.Ln, 05.40.2a, 81.40.Ef
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When a system at a high temperature is cooled rapidl
low temperatures, it may not be able to reach an equilibri
state in an experimentally realizable time. Instead it m
reach a long-lived arrested state, often with a degree of
tial disorder, which ultimately relaxes towards equilibriu
over very much longer time scales. An intriguing possibil
is that the disorder induced by the kinetics may be stro
enough that the system has widely different levels of
namical activity in distinct regions of space. Dynamica
heterogeneous states are found to arise, for instance,
glass-forming liquid@1#. From the theoretical point of view i
is important to ask: Are there simple models in which d
namically heterogeneous states arise naturally? Can their
mation and properties be understood in microscopic ter
Finally, how do such states decay, and how is equilibri
approached?

We address these questions by studying nonequilibr
quenches toT50, in simple lattice models. Following suc
quenches, the system may get arrested in a metastable
instead of reaching the ground state. A useful way to ch
acterize the resulting arrested state is to ask whether or
there is any dynamical activity in it. Aquiescentarrested
state is one in which the system settles into a single confi
ration, and degrees of freedom are frozen. Another poss
ity is that the arrested state may involve a large numbe
configurations which are dynamically accessible from e
other; in that case the system is dynamicallyactive. Interest-
ingly, all these possibilities are realized in quenches o
family of simple models, namely, Ising chains with differe
degrees of competition and conservation laws. In the abse
of competition, the system approaches the ground state i
dynamics is nonconserving@2#, while it reaches a quiescen
arrested state under spin-conserving dynamics@3#. On the
other hand, a system with competing interactions, evolv
under nonconserved dynamics, has been shown to exhib
active arrested state@4#. This naturally leads to the question
Are new features brought in if both conservation and co
petition are present? In this paper, we study the effects
quenching the simplest model which incorporates both th
features, namely, an Ising model with competing first a
second neighbor interactions, evolving through a dynam
with a single conservation law. Despite its simplicity, t
model shows interesting transitions in the character of
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arrested states as the degree of competition is varied~Fig. 1!.
The most interesting of these arrested states, reached
strong enough competition, is of a qualitatively new type
has active and quiescent regions interspersed in a disord
fashion throughout the system. Thisinhomogeneous quies
cent and active~IQA! state has nontrivial dynamical prope
ties. In theT50 steady state the autocorrelation function h
a stretched exponential decay. Further, if the temperatur
raised slightly, there is a two-step relaxation: the IQA st
relaxes to equilibrium via an intermediate long-lived inte
mediate energy state. We are able to quantitatively und
stand many of these unusual features, often found in gla
systems, within this simple model.

The equilibrium phases and transitions of the axial ne
nearest-neighbor Ising~ANNNI ! model have been well stud
ied and characterized@5#. However, its nonequilibrium prop
erties remain relatively unexplored even in one dimens
~1D!, except for a few studies. An early such study explor
arrested states obtained by quenching acrossT50 phase
boundaries of an extended ANNNI model appropriate
polytypes@6#. More recently, time-dependent coarsening
duced by nonconserved dynamics has also been studie
quenching the system across phase boundaries atT50 @7#,
and also fromT5` to T50 @4#. Here we explore the inter
play of competing interactions with conservation laws in t
dynamics. Our principal result is the identification and ch

FIG. 1. Space-time depiction of the activity~shown white! in
different arrested states. Different regimes:~i! Quiescent,~ii ! mo-
bile domain walls,~iii ! active, ~iv! essentially quiescent, and~v!
IQA state.
2577 © 1999 The American Physical Society
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2578 PRE 60DIBYENDU DAS AND MUSTANSIR BARMA
acterization of an IQA arrested state in this system.
Consider an Ising chain with spin variables$si% described

by the Hamiltonian

H52J1(
i

sisi 111J2(
i

sisi 12 . ~1!

An antiferromagnetic next-neighbor coupling (J2.0) com-
petes with the nearest-neighbor couplingJ1 which may be of
either sign. In what follows, we shall assumeJ1.0 ~ferro-
magnetic coupling! and definej 25J2 /J1 as a measure of th
strength of competition. The equilibrium ground state sho
a transition from the ferromagnetic state↑↑↑↑ . . . for j 2
,0.5, to the antiphase state↑↑↓↓ . . . for j 2.0.5. The point
j 250.5 is a multiphase point, at which the number of grou
states~all configurations with no single spins! is exponen-
tially large in system sizeL @5#. We are interested in the
effect of a quench from an infinite-temperature random c
figuration of the system toT50. We use a double-spin-flip
dynamics~DSFD!, in which an adjacent pair of randoml
chosen parallel spins is flipped( . . .↑↑ . . .→ . . .↓↓ . . . ).
Flips are attempted at unit rate, and are allowed only if
energy is not raised (DE<0). Evidently, the DSFD con-
serves the differenceM5M12M2 of the two sublattice
magnetizationsM1 and M2. The dynamics thus involves
single conservation law. The DSFD maps onto the w
known Kawasaki spin exchange dynamics through a sub
tice mapping, in which every spin on one of the two subl
tices is inverted and the sign of the nearest-neigh
couplingJ1 is reversed. In the mapped model with Kawasa
dynamics,M is the total conserved magnetization. We w
use the DSFD, rather than Kawasaki description; results
be translated readily. The DSFD can be looked upon as
extension of the single-spin-flip Glauber dynamics
multiple-spin flips at a time. Multispin moves arise in phys
cal contexts such as stacking dynamics in the 3C-6H transi-
tion in SiC @8# and deposition-evaporation dynamics
bunches of particles@9#.

The energy nonraising condition, which is a conseque
of a T50 quench, imposes local constraints on whether
not a pair of chosen spins can actually be flipped; these c
straints are a function ofj 2. The normalized energy change
De[DE/J1 involved in flipping a pair↑↑ to ↓↓ depend on
the environments of the pair, and are given in Eq. 2 belo
There are six distinct local environments; the other unlis
environments are related to these by reflection symmetri

~a! ⇑⇓↑↑⇓⇓ → ⇑⇓↓↓⇓⇓ De52~424 j 2!,

~b! ⇓⇑↑↑⇑⇓ → ⇓⇑↓↓⇑⇓ De54,

~c! ⇓⇑↑↑⇓⇓ → ⇓⇑↓↓⇓⇓ De54 j 2 ,

~d! ⇓⇓↑↑⇓⇓ → ⇓⇓↓↓⇓⇓ De52~428 j 2!, ~2!

~e! ⇓⇑↑↑⇓⇑ → ⇓⇑↓↓⇓⇑ De50,

~ f ! ⇓⇓↑↑⇑⇑ → ⇓⇓↓↓⇑⇑ De50.

The reverse of move~a! in Eq. ~2! will be referred to as (ā),
and similarly for the others.
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Evidently the dynamics is identical for all values ofj 2 for

which the same set of moves are allowed. Moves (b̄), (e),

(ē), ( f ), and (f̄ ) are allowed~i.e.,De<0) for all j 2. As j 2 is
varied,De changes sign for moves (a), (c), and (d). Each
such change causes a change in the nature of the arr
state. While~c! is an allowed move forj 2,0, (c̄) becomes
an allowed move forj 2.0. Similarly, acrossj 250.5 and

j 251, the allowed moves change from~d! to (d̄) and~a! to
(ā), respectively. Thus there are distinct regions of dyna
cal activity along the j 2 axis: ~i! j 2P(2`,0), ~ii ! j 2
P@0,0.5), ~iii ! j 250.5, ~iv! j 2P(0.5,1#, and ~v! j 2P(1,̀ );
see Fig. 1. In region~v!, i.e., for strong competition, the
system reaches an IQA arrested state.

We used Monte Carlo simulation to study the arres
steady states that are reached underDe<0 DSFD starting
from a random initial configuration corresponding toT5`.
We studied the approach to the arrested states, the dynam
behavior in these states, and finally the relaxation from th
states to equilibrium at low but finite temperatures. The
proach to, and the decay from, the steady state was m
tored by following the decay of the energy in time. Furth
in cases~iii ! and ~v!, we studied the dynamical behavior o
the steady state by monitoring the spin-spin autocorrela
function

C~ t !5
1

N (
i

^si~ t0!si~ t01t !&2^si~ t0!&2, ~3!

where t is the number of Monte Carlo steps per spin a
^ . . . & denotes an average overt0. We allowed for an explicit
dependence of averages on the space locationi, as arrested
states need not be translationally invariant. Only at the m
tiphase point~iii ! is the ground state reached on quenchin
in the other four regions ofj 2 discussed above~Fig. 1!, the
steady states are arrested.

Before discussing the IQA state in detail, we sketch so
features of the states in the other four regions.

~i! The arrested state is quiescent. It consists of ferrom
netic patches separated by clusters of frozen domain w
e.g., . . .↑↑↑↑↓↑↓↑↑↑ . . . . It is qualitatively similar to the

arrested state obtained in@3#, with only first-neighbor inter-
actions.

~ii ! The steady state has a number of diffusing dom
walls separating ferromagnetically aligned patches~Fig. 1!.
Though it resembles the active arrested states found in@4#,
there is an important difference. The level of activity is mu
lower in our case, as the number of walls increases as;L1/2

as opposed to;L in @4#.
~iii ! At the multiphase point there is a large degree

activity ~Fig. 1!, because theDe50 moves (d), ~f! and their
reverses carry the system through a subspace of ground-
configurations labeled by a given value ofM. The autocor-
relation functionC(t);t21/2 at long times, as in the uncon
strained DFSD@9#.

~iv! The steady state has alternating opposite-spin clus
of two or three spins, e.g., . . .↓↓↓↑↑↓↓↓↑↑↑ . . . , and is

quiescent. A single cluster of four or five spins may rema
in the steady state and diffuse through a quiescent ba
ground~Fig. 1!.

In region ~v!, an IQA arrested state with alternating qu
escent and active stretches is reached. A segment of a ty
configuration is depicted below.
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Each active region has parallel-spin triplets in a backgro
of alternating single spins, while the quiescent portions p
dominantly resemble the arrested state of region~iv!. Crucial
to the coexistence of active and quiescent regions is the
istence of stable walls at the boundaries of quiescent regi
These consist of left boundaries⇑⇓⇓ or ⇓⇑⇑ and right bound-
aries⇓⇓⇑ or ⇑⇑⇓, and are stable as moves~a! and ~c! are
energy raising forj 2.1. The numbers of quiescent and a

tive (q and a, respectively! regions of sizel̃ are found nu-

merically to decay as exp(2l l̃ ) with lq.0.05 and la
.0.25.

We now turn to the dynamical properties of the IQA sta
The autocorrelation functionin the steady state decays as
stretched exponential;exp(2(t/t0)

1/3) ~Fig. 2!. Interest-
ingly, the dynamical behavior of the IQA state can be rela
to the well-known symmetric exclusion process~SEP! of
particles on a line@10#. This can be understood as follow
Each spin triplet in an active stretch can move by one u
right or left, under the DSFD move ~e!

( . . .↓↑↓↑↑↑̄↓↑ . . .↔ . . .↓↑↓↓↓↑↓↑ . . . ). There is a hard-
core repulsion between triplets as move~c! is disallowed.
The dynamics within a single active region is thus precis
that of a symmetric exclusion process of hard triplets o
lattice, where the single spins can be viewed as holes.
autocorrelation functionCl̃ (r,t) averaged over spins, of a

active stretch of lengthl̃ with r l triplets ~wherel 5 l̃ 12 and
1/l<r<1/3), is thus governed by the diffusion of these ha
triplets; triplets extend over an extra lattice unit at bo
boundaries of an active stretch, making its effective lengtl .
Hence, we expectCl̃ (r,t) to decay ast21/2 for times t less
than a cutoff timet l(r), and as exp(2t/tl(r)) thereafter. Fur-
ther,t l(r) can be found by noting an exact mapping of eve
configuration of this problem to a corresponding configu
tion of the SEP. Under the mapping

FIG. 2. The autocorrelation function in the IQA state withL
512 000 and 106 histories. The dotted curves are the bounds d
cussed in the text. Inset: Decay of energy excess~in units of J1)
over the IQA value, starting from a random state.
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every triplet is replaced by a single particle, while a sing
spin maps onto a hole (↑↓↑↓↓↓↑↓↑↑↑↓↓↓↑↓
→sssdssddss). The mapped chain has a reduc
length l 85 l (122r). The stochasticW matrices for the two
processes are the same, as there is a one-to-one corre
dence between configurations and moves. This implies
the eigenvalue spectra of theW matrices in the two problems
are the same, and in particular, the gapD l to the first excited
state is the same. The inverse of the gap is just the cu
time t l , and so the above equality impliest l5t l 8

8 . For the
exclusion process, with free boundary conditionst l 8

8

52l 8
2
/p2 for large l 8 ~the diffusion constant equals12 ) @11#,

and hencet l(r)52l 2(122r)2/p2.
The autocorrelation functionCIQA(t) of the IQA state can

be expressed in terms of a sum over active stretches:

CIQA~ t !5(
l̃ ,r

Pl̃ ~r!Cl̃ ~r,t !, ~4!

wherePl̃ (r) is the probability of finding an active stretch o

length l̃ and densityr of triplets. Even without explicitly
determiningPl̃ (r), we can derive bounds onCIQA(t) using

Pl̃ 5SrPl̃ (r);exp(2lal̃ ). As r varies across its range, th
cutoff time t l varies between the two limitst l(0)52l 2/p2

~for a single triplet! and t l(
1
3 )52l 2/9p2 ~for a single hole

hopping over three lattice units at a time!. For each of these
limits t l(r* ), the sum in Eq.~4! is dominated at long times
by the term with the saddle point valuel * 5@ tp2/la(1
22r* )2#1/3. The bounds imply thatCIQA has a stretched
exponential form ;exp@2(t/t0)

1/3#, with 8/243p2<t0la
2

<8/27p2. The numerically determined valuest0.0.08 and
la.0.25 are consistent with these boun
~Fig. 2!.

Thedynamics of approachto the IQA state, starting from
a random initial configuration, is also interesting. From n
merical simulations the energy is found to decay as;exp
@2(t/t0)

1/3# ~see inset in Fig. 2!. This is associated primarily
with the fall in the numberN4 of four-spin clusters which
diffuse through ground-state stretches . . .↑↑↓↓ . . . until

they dissociate when they encounter ‘‘traps’’ in the form o
single spin or a triplet; e.g., . . .↑↑↓↑↑↑↑ . . .

→ . . .↑↑↓↓↓↑↑ . . . . The typical time for a four cluster to
diffuse over a lengthl before encountering such a trap
l 2/D, implying that N4( l ) decays as exp(2Dt/l2). Further,
the stretch lengths are distributed exponentially;exp(2ll),
so that the average ofN4( l ) over l is dominated by a saddle
point valuel * 5(2Dt/l)1/3 at larget. This argument is remi-
niscent of that in@12# and implies a stretched exponenti
form for the decay.

Finally, let us discuss therelaxation to equilibriumfrom
the IQA arrested state. The IQA state has regions with t
distinct types of excitations, namely, active patches w

-
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2580 PRE 60DIBYENDU DAS AND MUSTANSIR BARMA
mostly single spins~and occasional mobile triplets! and qui-
escent patches with mostly triplets~and occasional frozen
single spins!. If T is raised to a small value, the system r
laxes to an equilibrium state close to the . . .↑↑↓↓ . . .

ground state, by annealing out both the single-spin and tri
excitations. Figure 3 shows the subsequent variation of
ergy with time. There is a relatively rapid approach to
second metastable state, evidenced by a long plateau~Fig. 3!,
followed by an eventual approach to equilibrium. This c
be understood as follows. For finiteT, the energy raising
moves (a), (b), (c), and~d! are allowed, with probabilities
vk;exp(2Dek /T), k5a,b,c,d; the associated time scale
are;1/vk . Moves~a! and~c! are instrumental in annealin
out the two different kinds of local excitations~isolated spins
and triplets, respectively!. They act on time scales which ar
widely different@vc

21/va
21;exp(4J1 /T)# leading to the pla-

teau. For smallt , i.e., t;va
21 , only move~a! is effective,

which destabilizes active-quiescent boundaries and cre
five-spin clusters. Single spins diffuse out of active stretc
and annihilate on meeting five clusters, e.g.,↓↓↑↓↓↓↓↓
→↓↓↑↑↑↓↓↓. After the single spins anneal out, the syste

FIG. 3. Energy per sitee(t) (d) in units of J1, measured from
the ground-state value, when the IQA state is taken toT.0.29J1.
We usedva51, vc50.931026, L51200, and 12 initial condi-
tions. Also shown are the fraction of single spins (n) and triplets
(h).
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reaches a metastable state with clusters of length 2 an
much like the arrested state in region~iv!. This continues till
t*vc

21 , when triplets begin to decay. To leading order
low T, the predominant decay channel involves the followi
steps:~i! the conversion of a triplet to a single spin and
four-spin cluster~at ratevc), ~ii ! the production of a single
spin when the four cluster meets the nearest triplet, and~iii !
the fast diffusion of single spins till they meet triplets
single spins at separation 2n (n 5 odd!, whereupon they
annihilate, e.g., ↓↓↑↓↓↑↑↑→↓↓↑↑↑↑↑↑→↓↓↑↑↓↓↑↑.
Process~iii ! is a variant of the single species diffusion
annihilation process@13#, implying a power-law (;t21/2)
decay for the energy.

To summarize, a simple understanding of the dynamics
the IQA state can be achieved in terms of diffusing exci
tions; the nature of approach, steady-state autocorrela
function, and decay of the state involve variants of the d
fusion problem. For instance, the approach to the IQA s
involves diffusion in the presence of randomly placed tra
while the autocorrelation function involves the consequen
of confinement of diffusing excitations in active stretches
random lengths. In both cases, an average over the dyn
cally generated randomness results in a stretched expone
decay. The two distinct time scales for relaxation from t
IQA state arise from the different activation rates for the tw
types of diffusing excitations. Diffusion-limited annihilatio
of the second type governs the power-law decay towa
equilibrium.

We conclude by pointing out that IQA arrested states
cur in several other situations, for instance, with antifer
magnetic nearest-neighbor coupling (J1,0), and also under
a quench to region~v! from a quiescent arrested state
region ~i!. Further, an IQA state is found in quenches of
extended ANNNI model relevant to polytype transition
This model is richer, and shows variability in the micr
scopic nature of activity in IQA arrested states for differe
parameter values@14#. Interestingly, despite this variation
the dynamical behavior remains of the same form—a gen
consequence of the diffusion-based description given ab

We thank A. Dhar, D. Dhar, and S.N. Majumdar for us
ful discussions.
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